
Test Plan Report for ALSApp

TED UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

CMPE492 - TEST PLAN REPORT

Project Title

ALSApp (Agriculture and Livestock Support Application)

Project Supervisor

Venera ADANOVA

Project Juries

Ayşe Yasemin Seydim

Tansel Dökeroğlu

Project Members

Engin Samet Dede

Sevgi Dilay Demirci

Gizem Ünsal

17/04/2025

Test Plan Report for ALSApp Page 1 / 33

Table Of Contents

1.Introduction .. 2

1.1 Project Description ... 2

1.2 Report Description ... 2

2. Scope .. 3

3. Quality Objectives .. 4

3.1 Primary Objectives ... 4

3.2 Secondary Objectives ... 5

4. Test Strategy .. 6

4.1 Test Objectives ... 6

4.2 Test Assumptions.. 7

4.3 Data Approach ... 7

4.4 Levels of Testing ... 8

4.5 Functional Testing .. 9

4.6 Regression Testing .. 9

4.7 User Acceptance Testing (UAT) .. 10

5.Roles and Responsibilities ... 10

6. Execution Strategy ... 11

6.1 Entry Criteria ... 11

6.2 Exit Criteria ... 12

6.3 Validation and Defect Management .. 13

7. Roles and Responsibilities... 16

7.1 QA Team .. 16

7.2 Development Team ... 16

7.3 UAT Participants.. 16

8. Test Strategy .. 16

8.1 QA Role in the Test Process .. 16

8.2 Bug Life Cycle .. 18

8.3 Testing Types ... 24

8.4 Bug Severity and Priority Definition ... 25

9. Resource and Environment Needs .. 26

9.1 Testing Tools .. 26

9.2 Configuration Management .. 26

9.3 Test Environment ... 27

10. Test Schedule .. 27

11. Glossary ... 29

12. References .. 31

Test Plan Report for ALSApp Page 2 / 33

1.Introduction

1.1 Project Description

The goal of our project is to develop an application that will make tracking easier for farmers in

a variety of ways. Furthermore, this platform combines all the necessary resources to improve

livestock performance and farming activities. Users will be able to enter their animals’ health

data and receive relevant information, track their crops digitally for optimal efficiency, and track

the growth and development of their crops and animals in real time using an easy-to-use

interface that is favourable to both farmers and livestock. By consolidating all agricultural and

livestock management needs onto a single platform, this system enables users to manage their

operations in a more organized, efficient, and planned manner. It also provides instant updates

on industry developments, helping users stay informed and responsive to industry changes. They

will be aware of government support, mainly offered by the Ministry of Agriculture and

Forestry, and benefit from funding opportunities. In addition, the following process can also be

used by the Ministry of Agriculture and Forestry staff to keep track of the reliability and

accuracy of support.

1.2 Report Description

This Test Plan Report outlines the strategy, scope, resources, and schedule for testing ALSApp

(Agriculture and Livestock Support Application). The objective of this document is to define a

comprehensive approach to verify that the system meets its functional and non-functional

requirements. Building upon the previously defined High-Level Design, this report details the

testing methodologies, test cases, expected outcomes, tools, and responsibilities involved in

ensuring the application's quality, reliability, and performance throughout its development

lifecycle.

Test Plan Report for ALSApp Page 3 / 33

2. Scope

In this section, the scope of testing activities of the ALSApp system are defined. The document

provides the key features and the functionality the Quality Assurance (QA) team will verify to

validate the reliability, usability, and fulfill the business requirements. The scope mainly

encompasses core operational modules that reflect interaction with the end users and

processing behind the scenes. Included are the features to be tested:

● User Authentication and Authorization

These will include user registration, login, logout and user role based access control

(RBAC). Farmers and Ministry officials will access levels, the proper session

managements and security constraints to be tested in both.

● Livestock and Crop Data Tracking

The function testing will verify if the application can add, edit, delete, and get the data

of livestock and crop. The system will also be tested using some information that it

needs to persist across sessions and devices.

● Real-Time Weather Data Integration

Testing is also performed for its integration with the external weather APIs. Weather

alerts will consider the user location, verified by QA, and will verify accuracy,

frequency and reliability of such alerts, as well as an error handling of failed API

response.

● Government Support Listings and Applications

 The scope of testing involves validation of the support programs fetched from the

Ministry’s database. The functional coverage will include the lists of supports,

application for eligibility, status tracking and the rejection / approval workflows.

● Notification Management System

 With this feature your users will receive notifications at right time and right place. We

will QA the notification generation, delivery, and interface behavior of weather, support

update, or account alert notifications.

Test Plan Report for ALSApp Page 4 / 33

3. Quality Objectives

The aim of the Quality Assurance (QA) process of ALSApp is not only about getting the

application to work properly, but to provide a seamless and also secure, reliable and easy to

use experience across all ALSApp supported modules and platforms. This section details the

testing strategy both as primary and secondary quality goals that will govern the test strategy

tool.

3.1 Primary Objectives

The key task of this phase is to test the functioning part of the application to validate the

functional integrity, and find out and fix any issues that prevent a user from interacting with

the system or reduce system’s reliability. Core of the system’s requirements and development

specifications, and these goals directly match.

● Ensure the system fulfills all functional requirements

The testing will prove that all the functional requirements defined in the Software

Requirements Specification (SRS) and Low-Level Design (LLD) documents are

correctly implemented and work as expected at normal and boundary conditions.

● Maintain usability, stability, and performance across all modules

The application should be steady across farmers’ and ministry personnel’s roles; in

market, responsive interface, effective flow of data, and particularly load resilient trades

(especially in weather and support modules).

● Deliver a bug-free experience in all core workflows

Before a production release, all major user journeys must be free of blocking or critical

defects as they pertain to user authentication, data tracking, government support

application and notification handling.

Test Plan Report for ALSApp Page 5 / 33

3.2 Secondary Objectives

The project's secondary aims center on making the system durable and enabling both tracing

of test results and ensuring stakeholder contentment. Such objectives help projects maintain

their quality path by enabling continuous verification and validation procedures.

● Detecting and reporting defects early

 Unit and integration testing defects provide the opportunity for early detection during

which rework and release time performance is significantly minimized. This objective

will use exploratory testing and risk-based prioritization.

● Maintaining traceability between requirements and tests

 A Requirements Traceability Matrix (RTM) will chart every test case into one or more

requirements. It helps to ensure we cover 100 percent, and it also provides impact

analysis if something happens to the scope or the design.

● Ensuring successful UAT (User Acceptance Testing) sign-off by stakeholders

Key end users and stakeholders will be final validated. With an understanding that

ALSApp meets real world needs and that ALSApp is ready for deployment in

production environments, sign off in UAT will confirm the project is ready for sign off.

Test Plan Report for ALSApp Page 6 / 33

4. Test Strategy

Overall guidelines of how to apply all verification and validation activities during the ALSApp

testing lifecycle, the test strategy specifies. Objective, assumptions, methodologies and test

levels of the software product to be made sure that the software product has been achieved its

purpose as well as reliable and a high quality of end users.

4.1 Test Objectives

Basically, the process of verification is to verify that the implemented features of the system

are as per the need under normal as well as exceptional scenarios. Specific objectives include:

● The test observes if the behavior of the system is verified with the documented

requirements. To ensure traceability and coverage, the Software Requirements

Specification (SRS) and Low-Level Design (LLD) will be derived from all test

scenarios.

● Confirm integration between the frontend, backend and third parties. All the ways of

communicating between UI components, internal APIs and external systems such as

OpenWeatherMap and government support APIs will be thoroughly validated.

● Maintain data’s accuracy, security and traceability. Validation tests will prove that data

entered or read into ALSApp are processed correctly, securely and traceable in the

application workflow.

Test Plan Report for ALSApp Page 7 / 33

4.2 Test Assumptions

The testing strategy further assumes that such environmental and development conditions were

achieved before actually performing the test. These assumptions will help the QA team

continue to work effectively.

● All application modules are considered stable and feature complete. First, the freeze of

the functionality is necessary before entering the test cycle so as not to risk scope creep

or test invalidation.

● The required APIs (e.g: weather and support systems) are expected to be live and

available. During testing periods, if external dependencies are not operational and stable

to some degree of accuracy, validation of them will not be accurate.

● When there is a defect or QA is unblocked, Developers are available to resolve. It is

assumed to be a loop between QA and development teams’ handles, which takes care

of the bug triage and resolution in a short time.

4.3 Data Approach

To test ALSApp, a synthetic and real-world data combination will be used to simulate realistic

user interactions:

● For entities such as livestock records, crop entries, user profiles and support

applications, synthetic test data will be generated to make sure that the result is

repeatable and safe.

● Real time data, behavior under dynamic conditions will be evaluated in terms of live

API responses from OpenWeatherMap.

● Data consistency, integrity and correctness through several modules shall be ensured

through manual and automated validations.

Test Plan Report for ALSApp Page 8 / 33

4.4 Levels of Testing

In order to assure complete verification at each level of development, ALSApp will be tested

in various levels of testing which are explained below:

● Unit Testing:

Tools used by the developers to ensure each component and each method have been

conducted properly and can work in isolation.

● Integration Testing:

Integration testing mainly deals with interactions between front-end components, back-

end services, and databases, including third-party API calls.

● System Testing:

 The System Testing is carried out by testing the entire system’s behavior end to end

and simulating actual user scenarios and workflows among modules.

● User Acceptance Testing (UAT):

Farmers and from ministry representatives conduct real world validation to ensure that

ALSApp meets business needs and can be deployed.

Test Plan Report for ALSApp Page 9 / 33

4.5 Functional Testing

Functional testing makes sure that all the features are working as per the defined requirements.

Test Coverage Includes:

● User login and authentication workflows

● User profile creation and management

● Animal and crop registration and editing.

● Retrieval and real-time updates of weather dashboard

● Support from submission to where form support from government, eligibility checks

and tracking

● Notification delivery for critical system events

4.6 Regression Testing

Regression testing makes sure that previously existing features got along with the changes

made in the system.

Scope:

● Defect resolutions and system upgrades are to be executed after major releases

● No unintended side effects are introduced into any previously tested functionality.

● In the case of high frequent areas such as login and dashboard components, automated

regression suites can be used.

Test Plan Report for ALSApp Page 10 / 33

4.7 User Acceptance Testing (UAT)

The final validation of readiness of ALSApp is done by UAT involving real stakeholders in a

near production environment.

● Participants:

Specific test scenarios will be given to ministry staff and farmers who are picked for

pilot testing to execute test scenarios and report back the feedback.

● Focus Areas:

1. Usability, clarity, and responsiveness of the interface

2. Opportunities for support information and eligibility flows to be more accessible.

3. Accuracy of localized weather alerts

4. Seamless user journey from login to submission and notification

● Goal:

 Get stakeholder formal approval and sign off before launch.

5.Roles and Responsibilities

This section describes the specific roles given to each of the team members who are part of the

ALSApp quality assurance process. This distributes all the responsibilities to be held

accountable and to maintain a smooth testing workflow between the development and QA

teams. There is an association between a role and important testing activities such as planning,

execution, defect management, and validation of releasing. Below is a table describing the

various roles, the members of the team that has been allocated to the function, and

responsibilities of the function in the context of the project.

Test Plan Report for ALSApp Page 11 / 33

Role Team Member(s) Responsibilities

Project Manager Sevgi Dilay Demirci Coordinating schedules and

acts as a primary contact

between developer and QA

teams.

QA Lead Gizem Ünsal Drives the testing process

including planning,

organizing, mocks,

reviewing, bug triaging and

reporting.

QA Engineer Engin Samet Dede Works on design, prioritizing

bugs, retests fixes, and makes

sure he is getting to the

required boundary.

Developer All Team Members Bug fixes, assists QA in bug

investigation, ensures stable

builds are delivered.

6. Execution Strategy

Execution strategy tells how, when the testing begins, what are the conditions by which the

testing is marked complete and what to do with the defects during deployment. This makes it

a process to run QA operations in a structured and traceable manner from the start of testing to

closure.

6.1 Entry Criteria

There are simply some preconditions as before which the QA must fulfill before the testing can

start and can perform effective and accurate verification activity. These entry criteria include:

● Fully Deployed Development Environment:

● The application should be deployed and is accessible for testing the latest version.

Test Plan Report for ALSApp Page 12 / 33

● Frontend and Backend Integration Completed:

The end product (i.e.: the core modules and APIs (e.g.: weather data, government

support), must work and be successfully integrated.

● Test Cases and Test Data Prepared:

Then, all test cases are reviewed and completed and synthetic or real data is populated

where needed.

● QA Team Access and Documentation Availability:

Credentials and all relevant tech documents (resources, requirements) should be

available to the QA team; and the QA team needs to have full access to the actual testing

environment.

6.2 Exit Criteria

When the application meets such conditions that show a stable, acceptable version of this

product it is the end of the QA process. Exit criteria include:

● All High-Severity Defects Resolved:

Severity 1 or 2 issues must be fixed, retested and verified before passing the test phase.

● Minimum 95% Test Case Pass Rate:

To make core functionality reliable, a high level of test coverage and success is needed.

● User Acceptance Testing Feedback Incorporated:

UAT of the mobile application, must also involve feedback from pilot users (farmers

and ministry staff) and it must be evaluated and applied where required.

● Approval of Staging Deployment:

The application must be formally approved for deployment to the staging or pre-

production environment by the QA Lead and Project Manager.

Test Plan Report for ALSApp Page 13 / 33

6.3 Validation and Defect Management

Bugs are reported, tracked, prioritised and resolved actually and this is referred to as Defect

Management. There will be a structured defect lifecycle and communication routine followed

by the ALSApp QA team to resolve issues and communicate with the defects.

● Defects Logged in GitHub:

 All bugs are reported via an agreed defect tracking tool if there is one, or the GitHub

Issues. Each issue includes step by step reproduction steps, screenshots (as applicable)

and expected vs. actual behavior.

● Severity and Priority Assignment:

All defined severity and priority levels are used to categorize each bug (see Section

6.3.2). It aids in making the decision as to the sequence and needs to be rectified.

● Retesting After Resolution:

When a bug has been marked fixed by developers, the QA team then does focused

retesting to ensure a bug has been resolved.

● Daily Synchronization with Developers:

QA teams sync meetings with the development teams are held daily and QA and

development teams discuss the bugs status, blockers, and triage decisions during the

daily stand-ups or syncing meetings.,

Test Plan Report for ALSApp Page 14 / 33

6.3.1 Bug Life Cycle

The term bug life cycle refers to the life which a defect goes through from time of discovery to

closure. Transparent bug status tracking and communication is handled using a standard

workflow that ALSApp adopted.

Basic Bug Status Flow:

● New: QA discovers the bug which goes into their systems for tracking purposes.

● Assigned: A developer obtains the task through review of the reported issue.

● Fixed: The developer handles the issue and sends it to verification after

resolving the problem.

● Verified: The system bug test outcome is confirmed by QA technicians.

● Closed: The official bug termination occurs at this stage.

● Reopened: Such bugs become eligible for reassignment following their fix

because they still exist.

The detailed description of the Bug Life Cycle with transition steps and responsibilities appears

in Section 8.2 Bug Life Cycle.

6.3.2 Severity and Priority Definitions

The bugs will be ranked based on how severe the problem is and how critical it is to be fixed.

These labels guarantee the release of the work on the quality standards required, and also to

help the team of development prioritizing their work.

Test Plan Report for ALSApp Page 15 / 33

Severity Level Description:

● Severity 1: Critical (like the exapmles as app crash, data loss, security breach).

Excludes testing or usage totally.

● Severity 2: High - Major functional failure with broken fundamental functionality, but

the system remains functioning.

● Severity 3: Medium (minor logic problems, efficiency delays, usability challenges).

● Severity 4: Low - embraces the concepts of Cosmetic/UI concerns, typos, slight visual

discrepancies.

Priority Level Description:

● Priority 1: Fix a blocker for release or important flow.

● Priority 2: Quickly resolve high business impact issues.

● Priority 3: Can Fix - Not blocking the working process, but beneficial if addressed.

● Priority 4: Low - Optional or enhancement-level component for after release.

Test Plan Report for ALSApp Page 16 / 33

7. Roles and Responsibilities

7.1 QA Team

Testers perform multiple tasks, which include developing and running test cases and

identifying along with reporting functional issues, followed by retesting solved problems.

● Write and execute test cases

● Report and track bugs

● Perform regression and retesting

7.2 Development Team

The development team handles the task of bug correction, supports testing activities, and

provides environmental setup.

● Fix assigned defects

● Support QA with debugging and environment setup

7.3 UAT Participants

Ministry staff along with farmers function as real users to validate products that operate in real-

world operational settings.

● Ministry officials and farmers

● Users will test the system as well as give feedback during the UAT phase.

 8. Test Strategy

8.1 QA Role in the Test Process

The Quality Assurance (QA) team is responsible for assuring that the ALSApp system fulfills

all functional and non-functional requirements both for farmers and staff of ministry. The QA

process is tightly related to Agile development iterations and the key responsibilities involved

are the following:

Test Plan Report for ALSApp Page 17 / 33

1)Requirement Analysis:

The Software Requirements Specification (SRS), Use Cases and Low Level Design documents

are reviewed by QA to be sure they are fully understood by them. It gives special attention to

modules like crop/livestock tracking, ministry support integration and real time weather data.

2)Test Case Design:

The continuity is all in QA where there is proper preparation of test cases covering all positive,

negative and edge scenarios of each module. It uses exploratory testing techniques on which

unexpected issues are identified using the domain knowledge.

3)Traceability Matrix (RTM):

Full requirement for the coverage is ensured by creating an RTM. Functional requirements are

mapped to each test case.

4)Test Execution:

 Core workflows such as user registration, product data entry, weather alert retrieval, support

filing, and its end-to-end execution are run manually. Pass / fail determination is based on what

is actually recorded against what is expected.

 5)Defect Logging and Reporting:

 Bugs detected are logged with reproducibility steps, severities and screenshots. Shared

documentation is used by the QA team to track issues.

6)Regression and Retesting:

After fixing the defects, QA does a retesting and regression testing of all the modules that are

affected only in order to test the system stability.

 7)Test Data Preparation: There are various data sets generated for different user roles (farmer,

ministry employee), product types, locations, etc. and weather conditions.

8)Acceptance Testing: Qa provides test scripts and observations for user acceptance testing

(UAT). Mock users representative of real farmers and ministry officials, will be used in UAT

planned to be done with.

Test Plan Report for ALSApp Page 18 / 33

8.2 Bug Life Cycle

Effective bug management is very important in software quality assurance for stable and

reliable applications. Bug Life Cycle is a sequence of steps a software defect passes through

the time it gets identified to the time it is finally closed after making it through all the stages.

The stages are set up to monitor the status of the defect, enhance the communication line

between the QA and development teams, and make sure that the defect is rectified in an order

and timely manner. In the following table and diagram below, the status flow and who is

responsible for each step has been depicted in the route to ALSApp bug resolution.

Status Description

New QA team discovers and reports a new bug.

Assigned QA Lead assigns the bug to the concerned

developer.

In Progress The developer starts working on the bug fix.

Fixed The developer labels the problem as fixed

and informs QA.

Retest QA retests the fix in the test environment to

confirm it's fixed.

Closed QA has validated the problem, and it is now

officially closed.

Reopened If the problem persists, the bug is reopened

and assigned to a developer.

Test Plan Report for ALSApp Page 19 / 33

Test Plan Report for ALSApp Page 20 / 33

 Overall Process

1. Bug Report

○ Start: The process starts off when a bug is reported by a user, which in case of

ALSApp, can be a Farmer or a Ministry Employee.

○ Details Logged: An entry has been made in ALSApp Bug Tracking System

regarding the details logged (eg. Module affected, Severity, Description).

Partition 1: Initial Assessment

● Reproducibility & Validity Check:

○ If the bug is supported by a sufficient amount of descriptive information, the

system (ie the QA team) will check if it is reproducible and if it is valid.

○ In that case, the bug is marked in NEW status, meaning this is a genuine issue

that can be reproduced.

○ The bug is labeled as UNCONFIRMED, and more details are requested from

the user. If no: The bug is marked as UNCONFIRMED. This process stops here

until further clarification is given.

Test Plan Report for ALSApp Page 21 / 33

Partition 2: QA Lead Review

● QA Review:

○ In case the issue is genuine, the QA lead examines the bug report.

○ Approval:

■ If the bug is approved, the QA Lead assigns a priority and severity to it.

■ The bug is then handed off to the appropriate developer in the bug’s

transition from the BUGS stage to the ASSIGNED one.

○ Rejection:

■ If the bug does not fulfill the criteria, it is rejected or marked as invalid,

and the process ends.

Partition 3: Developer Processing

● Bug Analysis and Fix

○ When assigned by the developer, the developer analyzes the bug in the light of

ALSApp’s prime modules, which covers crop/livestock tracking, weather data

or integration with ministry support.

○ In Progress:

■ The developer starts fixing by updating code and APIs or making

appropriate changes in the database.

○ After solving the issue, the status becomes RESOLVED.

○ The fix is submitted for review at this point.

Test Plan Report for ALSApp Page 22 / 33

Partition 4: Resolution Options

● Resolution Options:

○ Right after the bug is marked as RESOLVED, a dedicated partition shows the

various possible outcomes or resolution types:

■ FIXED: The issue is fully fixed.

■ DUPLICATE: The bug is a repeat of an already reported issue.

■ WONTFIX: It’s decided that the bug will not be fixed (perhaps because

it is deemed acceptable or lower priority).

■ WORKSFORME: The system or developer reports that the problem

cannot be replicated on their end.

■ The project policy may allow for the addition of additional alternatives

(such REMIND or INVALID).

○ Before proceeding to retesting, this division shows potential states and stresses

the decision-making component of bug resolution.

Test Plan Report for ALSApp Page 23 / 33

Partition 5: QA Verification (Retest)

● Retesting the Fix:

○ Once the resolution option is selected and the updated build is deployed in the

test environment, QA performs RETEST.

● Verification Outcome:

○ Successful Retest:

■ If QA verifies that the fix works correctly within the respective module

(be it crop/livestock tracking, weather, or ministry support), the bug is

moved to the VERIFIED state and then CLOSED.

○ Failed Retest:

■ If the bug still exists, QA documents the failure.

■ Reopen Option:

■ If the bug persists significantly, it is marked as REOPENED and

reassigned to the developer for further work.

■ Minor Issues:

■ In cases where only minor corrections are needed, small

adjustments might be applied and the process loops back to

retesting.

Test Plan Report for ALSApp Page 24 / 33

Final Outcome

● Closed:

○ When the repair is properly confirmed, the bug is tagged as CLOSED, and the

procedure is complete.

● Reopen and Repeat:

○ If the defect remains unresolved or fresh evidence suggests that it continues, it

will be REOPENED and returned to the ASSIGNED phase for another cycle.

8.3 Testing Types

Three types of testing will be executed for ALSApp:

1)Black Box Testing:

It examines module behavior while keeping the system code internals unknown to testers.

2)GUI Testing:

Ensures alignment with UI mockups, form validations, and user flow consistency. System

integration testing focuses on the verification of component communications specifically

targeting the weather API and ministry support API and database services. The system gets

tested for its compliance with requirements through Functional Testing. System testing allows

evaluation of full application compliance after completing its integration with the entire system.

3)Performance Testing:

Includes response time testing (e.g., under 2 seconds per weather request), and simultaneous

user access scenarios. UAT (User Acceptance Testing) functions as the termination step for

inspecting actual operational usability along with user contentment.

Test Plan Report for ALSApp Page 25 / 33

8.4 Bug Severity and Priority Definition

They will be divided between severity (impact) and priority (fix urgency):

8.4.1. Severity Levels

Critical (1): App crash, data loss, or blocked core functionalities like login or data entry. Major

features broken (e.g., weather not updating, but workarounds are possible).

Medium (3): Minor feature malfunction (e.g., incorrect alert text).

Low (4): Cosmetic UI issues, typos, or layout inconsistencies.

8.4.2. Priority Levels

Must (2): Must be done before being released.

Fix (2): Should be fixed as soon as possible.

 Have Time (3): Allow time, does not block release.

Enhancement (4): Priority may be low, but this functionality will be nice-to-have for future

iterations.

Weekly status and prioritization discussions will occur in bug triage meetings.

Test Plan Report for ALSApp Page 26 / 33

 9. Resource and Environment Needs

This section describes the tools and environments needed in addition to the system

configuration for the ALSApp system to be fully tested. The resources are picked to handle

client server architecture through mobile and web platforms with the capability for manual

and automated testing.

9.1 Testing Tools

This section outlines the tools and platforms that are used in the entire process of testing the

ALSApp. Each tool is picked depending on its capability to be used for defined particular

testing task from test case concerns to its execution to defect tracking and reporting. Efficiency,

traceability and accurate documentation in the test cycle is a number of manual and automatic

solutions that are provided.

Purpose Tool/Platform

Test Case Design & Tracking Microsoft Excel, Google Sheets

Test Case Execution Manual Testing, Selenium (for automation)

Defect Logging & Tracking Microsoft Word, Trello or GitHub Issues

Test Reporting PDF Reports (generated manually)

API Testing Postman

Code Version Control Git (via GitHub)

Mind Mapping & Test Planning XMind, Draw.io

 9.2 Configuration Management

Thus, in order to enforce version control and consistency across dev and QA teams,

Tracked in Google Drive for Documents Versioning or in the SVN.

Code Changes: Code changes are managed through Git and GitHub, in support of saving

changes to individual files, maintaining various branches for development and testing, etc.

Tag and document build versions in order to be able to trace them and follow them through

each testing phase.

Test Plan Report for ALSApp Page 27 / 33

 9.3 Test Environment

To test the cross-platform compatibility of ALSApp, the App will be tested on various

platforms and device configurations.

Supported Mobile Devices:

 Android: Samsung Galaxy series, Google Pixel, Xiaomi devices

 iOS: iPhone 7 and newer, iPad 5th Gen and newer

Test Server Configuration:

This would also be deployed on Firebase/Node.js or Spring Boot (based on what the final

hosting is).

Uses Cloud Firestore or MySQL as Database (according to what is described in LLD specs).

Weather API and mock Ministry Support API are connected to API Services.

Other than that, every test environment has to be refreshed before each test iteration so that test

runs are clean and results are accurate.

10. Test Schedule

The following schedule presents the timeline of all scheduled testing activities throughout the

ALSApp project. Each task has a well-defined start date, end date, effort and notes, which are

notes to let you know highlights of what to review on that task. It follows an iterative testing

schedule to progressively develop its verification while still being synchronous to the delivery

milestones.

It also covers test planning, design, testing, and validation, functional as well as non-functional

testing, fully covering the complete timeline of them. Environment setup, user acceptance

testing and performance testing are strategically planned to fit build readiness and stakeholder

feedback. A test cycle is done to ensure all major defects are identified and fixed early and the

product becomes stable and deployable by the end of the test cycle.

Test Plan Report for ALSApp Page 28 / 33

Task Name Start Date End Date Effort Notes

Test Planning &

Strategy

Finalization

Apr 15, 2025 Apr 17, 2025 3 days Review

documents,

finalize test

objectives

Requirement &

Use Case Review

Apr 15, 2025 Apr 18, 2025 4 days Review Analysis

& LLD Reports

Test Case Design Apr 18, 2025 Apr 21, 2025 4 days Write manual

test cases

RTM Creation &

Peer Review

Apr 20, 2025 Apr 22, 2025 3 days Map test cases to

requirements

Test

Environment

Setup

Apr 19, 2025 Apr 20, 2025 2 days Deploy app to

QA env

Functional

Testing –

Iteration 1

Apr 22, 2025 Apr 25, 2025 4 days Test login,

registration,

product entry

Functional

Testing –

Iteration 2

Apr 26, 2025 Apr 29, 2025 4 days Test weather,

support,

notifications

Bug Fixing &

Retesting

Apr 30, 2025 May 1, 2025 2 days Retest after bug

fixes

Integration &

System Testing

May 2, 2025 May 3, 2025 2 days End-to-end

validation

Regression

Testing

May 4, 2025 May 5, 2025 2 days Verify no new

issues

User Acceptance

Testing

May 6, 2025 May 7, 2025 2 days Test with

simulated real

users

Performance

Testing

May 8, 2025 May 8, 2025 1 day Load testing

Final Bug Fixes

& Validation

May 9, 2025 May 10, 2025 2 days Last validation

cycle

Release to

Staging

May 11, 2025 May 11, 2025 1 day Deploy to final

test env

Report

Submission &

Sign-off

May 12, 2025 May 12, 2025 1 day Delivery of the

QA report

Test Plan Report for ALSApp Page 29 / 33

11. Glossary

ALSApp: Agriculture and Livestock Support Application, a digital platform for farmers and

livestock breeders.

Application: A software program designed to perform specific user tasks, often used on mobile

devices or computers.

Livestock: Domesticated animals raised in agriculture for food, fiber, or labor. Examples

include cattle, sheep, and poultry.

Real-Time: Data or information that is updated and available immediately as events occur.

Interface: The point of interaction between the user and the application, often designed to be

user-friendly and intuitive.

Crop: Cultivated plants grown on a large scale for food, fiber, or other commercial purposes.

Examples include wheat, corn, and rice.

Crop Tracking: The process of monitoring and managing crop growth, health, and yield using

digital tools.

Sequence: The specific order in which tasks, processes, or events occur within a system or

workflow.

Stimulus: An external factor or input that triggers a response in the system, such as a user action

or environmental change.

Flagging: The act of marking or identifying data, issues, or conditions that require attention or

action, such as potential errors or anomalies. API (Application Programming Interface): A set

of rules that allows different software components to communicate. ALSApp uses APIs for

weather data and government support services.

Bug Lifecycle: The process of software defect follows from discovery to closure, including

statuses such as New, Assigned, Fixed, Verified, Closed, or Reopened.

Defect Severity: Indicates the impact a bug has on the functionality of the software (e.g.,

Critical, High, Medium, Low).

Test Plan Report for ALSApp Page 30 / 33

Defect Priority: Defines how soon a defect should be fixed, regardless of its severity. Priorities

range from P1 (urgent) to P4 (low).

Functional Testing: A type of testing that checks if the application meets the defined

requirements by testing features like login, data tracking, and notifications.

Integration Testing: Testing performed to verify the interaction between different modules or

systems (e.g., frontend with backend and APIs).

Low-Level Design (LLD): A detailed design document that specifies how each component of

the software system should function.

Regression Testing: A type of testing to confirm that a recent code change has not adversely

affected existing functionalities.

Requirements Traceability Matrix (RTM): A document that maps each test case to its

corresponding requirement, ensuring full test coverage.

Severity vs Priority: Severity relates to how badly a defect affects the software. Priority relates

to how soon it should be fixed.

System Testing: End-to-end testing of the entire application to ensure it meets requirements

and behaves as expected in real-world scenarios.

Test Case: A set of conditions or variables used to determine if a system functions correctly.

User Acceptance Testing (UAT): The final phase of testing where real users validate the system

before it goes live.

Verification vs Validation: Verification checks if the product is built correctly; validation

checks if the right product is built (meets user needs).

Traceability: Ensuring each requirement is tested and accounted for in the testing process using

RTM.

Test Plan Report for ALSApp Page 31 / 33

12. References

[1] BrowserStack, "Entry and Exit Criteria in Software Testing," BrowserStack, [Online].

Available: https://www.browserstack.com/guide/entry-and-exit-criteria-in-software-testing.

[Accessed: Apr. 2, 2025].

[2] BugBug, "Bug Life Cycle in Software Testing," BugBug.io, [Online]. Available:

https://bugbug.io/blog/software-testing/bug-life-cycle/. [Accessed: Apr. 2, 2025].

[3] Agile Alliance, "Agile 101," AgileAlliance.org, [Online]. Available:

https://www.agilealliance.org/agile101. [Accessed: Apr. 5, 2025].

[4] IBM, "What is an API?," IBM Cloud Learn, [Online]. Available:

https://www.ibm.com/cloud/learn/api. [Accessed: Apr. 6, 2025].

[5] BugBug, "Bug Life Cycle in Software Testing," BugBug.io, [Online]. Available:

https://bugbug.io/blog/software-testing/bug-life-cycle/. [Accessed: Apr. 6, 2025].

[6] BrowserStack, "Entry and Exit Criteria in Software Testing," BrowserStack, [Online].

Available: https://www.browserstack.com/guide/entry-and-exit-criteria-in-software-testing.

[Accessed: Apr. 7, 2025].

[7] Guru99, "Defect Severity and Priority in Testing," Guru99.com, [Online]. Available:

https://www.guru99.com/defect-severity-priority.html. [Accessed: Apr. 8, 2025].

[8] Software Testing Help, "Functional Testing," SoftwareTestingHelp.com, [Online].

Available: https://www.softwaretestinghelp.com/functional-testing/. [Accessed: Apr. 8, 2025].

[9] GeeksforGeeks, "Low Level Design (LLD) in Software Engineering," GeeksforGeeks.org,

[Online]. Available: https://www.geeksforgeeks.org/low-level-design-llg-in-software-

engineering/. [Accessed: Apr. 8, 2025].

[10] Software Testing Fundamentals, "Requirements Traceability Matrix (RTM),"

SoftwareTestingFundamentals.com, [Online]. Available:

https://softwaretestingfundamentals.com/requirements-traceability-matrix/. [Accessed: Apr. 8,

2025].

[11] ISTQB, "ISTQB Glossary," ISTQB Glossary, [Online]. Available:

https://glossary.istqb.org/en. [Accessed: Apr. 9, 2025].

https://www.browserstack.com/guide/entry-and-exit-criteria-in-software-testing
https://bugbug.io/blog/software-testing/bug-life-cycle/
https://www.agilealliance.org/agile101
https://www.ibm.com/cloud/learn/api
https://bugbug.io/blog/software-testing/bug-life-cycle/
https://www.browserstack.com/guide/entry-and-exit-criteria-in-software-testing
https://www.guru99.com/defect-severity-priority.html
https://www.softwaretestinghelp.com/functional-testing/
https://www.geeksforgeeks.org/low-level-design-llg-in-software-engineering/
https://www.geeksforgeeks.org/low-level-design-llg-in-software-engineering/
https://softwaretestingfundamentals.com/requirements-traceability-matrix/
https://glossary.istqb.org/en

Test Plan Report for ALSApp Page 32 / 33

[12] Requirements.com, "What is Traceability in Software Testing?," Requirements.com,

[Online]. Available: https://www.requirements.com/blog/what-is-traceability-in-software-

testing/. [Accessed: Apr. 9, 2025].

[13] E. S. Dede, S. D. Demirci, and G. Ünsal, "ALSApp: Agriculture and Livestock Support

Application – Analysis Report," Department of Computer Engineering, TED University,

Ankara, Turkey, 2024.

[14] E. S. Dede, S. D. Demirci, and G. Ünsal, "ALSApp: Agriculture and Livestock Support

Application – High Level Design Report," Department of Computer Engineering, TED

University, Ankara, Turkey, 2024.

[15] E. S. Dede, S. D. Demirci, and G. Ünsal, "ALSApp: Agriculture and Livestock Support

Application – Low Level Design Report," Department of Computer Engineering, TED

University, Ankara, Turkey, 2025.

 [16] California State University, Sacramento, "Use the Test Plan document to describe the

testing approach and overall framework that will drive the testing of the project. Template

Instructions," [Online]. Available: https://www.csus.edu/_internal/_documents. [Accessed:

Apr. 14, 2025].

[17] StrongQA, "Test Plan Template 05," StrongQA, [Online]. Available: https://strongqa-

production-assets.s3.amazonaws.com/uploads/document/doc/61/test-plan-template-05.pdf.

[Accessed: Apr. 14, 2025].

https://www.requirements.com/blog/what-is-traceability-in-software-testing/
https://www.requirements.com/blog/what-is-traceability-in-software-testing/
https://strongqa-production-assets.s3.amazonaws.com/uploads/document/doc/61/test-plan-template-05.pdf
https://strongqa-production-assets.s3.amazonaws.com/uploads/document/doc/61/test-plan-template-05.pdf

